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Abstract

The use of adaptive mesh refinement techniques is crucial for accurate and efficient simulation of higher dimensional

spacetimes. In this work we develop an adaptive algorithm tailored to the integration of finite difference discretizations

of wave-like equations using characteristic coordinates. We demonstrate the algorithm by constructing a code imple-

menting the Einstein–Klein–Gordon system of equations in spherical symmetry. We discuss how the algorithm can

trivially be generalized to higher dimensional systems, and suggest a method that can be used to parallelize a char-

acteristic code.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The investigation of the characteristic structure of a system of partial differential equations (PDEs) gives
valuable insight on the behavior of allowed solutions. Analytical studies have long benefited from un-

derstanding and employing this knowledge. In the numerical realm, efficient algorithms have been devel-

oped which exploit the underlying characteristic structure. These algorithms are obtained by formally

transforming to characteristic variables, realizing how these need to be updated, and then employing this

information to construct an algorithm using the original variables. However, the explicit integration along

characteristics, where coordinates are chosen adapted to the characteristic directions, has received con-

siderably less attention. Indeed, this option has so far only been actively pursued within general relativity

(GR), although as discussed in [1,2] there are powerful reasons to consider this option in systems described
by wave-like equations.

The characteristic formulation of general relativity has since its introduction in the 1960s played an

important role as a tool to investigate different aspects of the theory (see for instance [3–8]). A clean picture

of the effect of gravitational waves and their geometric manifestation, links between the structure of future
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null infinity and some interior sources, and the analysis of singularity structure are some areas that have

effectively been tackled by this approach.

In recent years, the formalism has also displayed its usefulness in the numerical arena. Investigations of
critical phenomena [9–13], wave propagation on non-trivial backgrounds [14] and simulations of space-

times containing black holes [15–18] or neutron stars [19] have benefited from exploiting this approach.

Numerical simulations of black hole spacetimes are of considerable importance for the detection and

analysis of gravitational waves that could be measured by the new generation of gravitational wave de-

tectors. Among the systems expected to produce gravitational waves of sufficient intensity are those con-

taining black holes and neutron stars, and it would be ideal if the success obtained simulating single black

holes with 3D characteristic codes could be translated to these systems. Preliminary indications that this is

likely the case for a subset of possible black hole-neutron star binaries can be found in [19,20], where higher
dimensional, non-vacuum scenarios (yet simpler than the 3D binary black hole-neutron star system) have

been accurately simulated.

Unfortunately, the computational requirements for modeling a binary black hole-neutron star system

are quite high if one of the goals is to predict the waveforms produced by it in a quantitative manner. Since

the expected energy output in gravitational waves is at most a few percent of the total mass of the system,

the numerical simulation must guarantee that any systematic (numerical) error is well below this target. The

major issue in achieving an accurate description of the system, when a stable discretization has been ob-

tained, is to adequately resolve the different length scales involved. These scales are naturally defined by the
stellar dynamics, the black hole, and the distant weak-field regime where the gravitational waves are ex-

tracted. Covering all of these scales with a uniform grid (in a finite-difference based numerical simulation)

of sufficient resolution to accurately model the smallest features is not only a waste of resources, but may be

impossible to achieve on contemporary computers. Therefore, we need to use techniques that better exploit

available resources. One such technique is adaptive mesh refinement (AMR), whereby the simulation can

dynamically adjust the grid resolution in different regions of the domain to adequately resolve all features

with sufficient, but not excess, resolution.

In this paper we investigate the use of AMR techniques for characteristic evolution. Although we
concentrate on the GR case, the algorithms presented here can readily be applied to many other

equations. The use of characteristic AMR in GR has been partially addressed by several authors in the

past [9,10,12], however, in those cases the algorithms were geared to studying gravitational collapse and

singularity structure in spherical symmetry, and the techniques do not generalize to higher dimensional

systems. Here we present an AMR algorithm for characteristic evolution that can be applied to scenarios

with an arbitrary number of non-trivial spatial dimensions. Furthermore, the algorithm does not place

significant restrictions on the discretization scheme, and hence existing unigrid codes (as described, for

instance, in [15,17,18,21–23]) can, in principle, be incorporated into the adaptive framework in a straight-
forward manner. To demonstrate the basic algorithm, and show that it can adapt to dynamical features

of a solution, we have implemented a spherically symmetric code to solve the Einstein–Klein–Gordon

system.

The rest of the paper is organized as follows. In Section 2 we describe the coordinate system, set of

equations and corresponding discretization scheme that we will employ in the example problem. We use

a coordinate system with a single null direction, however, the AMR algorithm is most easily presented

for double null coordinates; hence in Section 3 we describe the adaptive scheme for double null evo-

lution. In Section 4 we mention how the basic algorithm is extended to a coordinate system with a
single null coordinate, how additional non-trivial spacelike dimensions can be handled, mention some

problem specific features such as the numerical dissipation and interpolation operators we use, and

describe a method that can be used to parallelize a characteristic code (with or without AMR). In

Section 5 we present results from our spherically symmetric code, and give some concluding remarks in

Section 6.
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2. The spherically symmetric Einstein–Klein–Gordon problem in the characteristic approach

Einstein�s equations can be expressed in notational form as Gab ¼ 8pTab, where Gab is the Einstein tensor
and Tab the stress energy tensor of the matter distribution. In the particular case of a scalar field U coupled

to GR, Tab results in [24]

Tab ¼ raUrbU� 1=2gab rcUrcU
�

þ m2U2
�
; ð1Þ

where gab is the metric tensor, and m is the mass parameter of the scalar field.

We introduce a coordinate system adapted to incoming null hypersurfaces in the following way: in-

coming lightlike hypersurfaces are labeled with a parameter v, each null ray on a specific hypersurface is

labeled with ðh;/Þ and r is introduced as a surface area coordinate (i.e. surfaces at r ¼ const: have area

4pr2). In these coordinates, the metric takes the Bondi–Sachs form [3,4]

ds2 ¼ e2bV =rdv2 þ 2e2b dvdr þ r2 dX2: ð2Þ
Note that the choice of incoming null surfaces is merely for convenience; the trivial change b ! bþ ip

takes the line element (2) into the one corresponding to outgoing null surfaces (further details can be found

in [25]). The algorithm presented here can easily be modified to handle the outgoing case.

In order to express the equations of motion in a simpler form, we introduce the following variables

V � �r þ g; ð3Þ
W ¼ rU: ð4Þ

The resulting equations (provided by Rrr ¼ 8pU2
;r, Rhh ¼ 8pU2

;h and �U ¼ 0, respectively, where Rab is the

Ricci tensor) reduce to:

b;r ¼ 2p
ðrW;r �WÞ2

r3
; ð5Þ

g;r ¼ 1� e2b 1
�

� 4pm2W2
�
; ð6Þ

2ðWÞ;rv ¼ � 1
�

� g
r

�
W;rr þ

g
r

� �
;r

W;r

�
�W

r

�
þ e2bm2W: ð7Þ

A properly posed problem requires data to be given on an initial v ¼ v0 hypersurface (which consists only

of the unconstrained W) and consistent boundary data on an intersecting surface (which includes W, g and

b). The boundary data comprises gauge, physical and constrained data. For instance, given the value of b
and W on an r ¼ const: surface the value of g is determined by the remaining Einstein equation Rvv ¼ 8pU2

;v

(which we call the consistency equation). Next we describe the particular setting used in the tests performed

throughout this work.
2.1. Coordinate conditions and boundary data

For our present purposeswe choose the outer boundary to coincidewith past null infinity (I�).At I�wefix a
Bondi coordinate system, therefore b ¼ 0 (i.e. v represents the affine time of observers at I�). Since past infinity
is a null hypersurface, data for W is unconstrained and in fact is intimately related (just a time derivative

difference) to the ‘‘BondiNews’’ which is the incoming radiation frompast null infinity.We provide data forW
arbitrarily, and then determine the value of g using the consistency equation, which on I� reduces to:

g;v ¼ 8pðW;vÞ2: ð8Þ
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2.2. Numerical implementation

We discretize Eqs. (5)–(8) using second order finite difference (FD) techniques. In order to include I� in
our computational grid, we introduce a compactified radial coordinate x ¼ r=ð1þ rÞ (hence r 2 ½0;1Þ) [23].
This coordinate is uniform in the domain ½0; 1� and is discretized by xi ¼ ði� 1ÞDx, with i ¼ 1; 2; . . . ;Nx;

similarly, v is discretized so that vn ¼ ðn� 1ÞDv, with n ¼ 1; 2; . . . ;Nv. As is customary, we label a grid

function f at coordinate location (xi; vn) by f n
i – see Fig. 1 below for a schematic representation of the

coordinate system and discretization. The boundary data is specified along the pair of intersecting null

surfaces x ¼ 1 (I�) and v ¼ 0. Integration of the evolution and hypersurface equations (5)–(7) then proceeds

via a sequence of radial integrations (inwards, from x ¼ 1� Dx to x ¼ 0) along each of the null surfaces

from v ¼ Dv to v ¼ V1. Specifically, the discretized hypersurface equations read:

bnþ1
i ¼ bnþ1

iþ1 � 2pDx
ð1� xcÞ

x3c
xcð1
�

� xcÞW;xj0 �Wj0
�2
; ð9Þ
gnþ1
i ¼ gnþ1

iþ1 � Dxð1� xcÞ2ð1� e2bj0ð1� 4pm2Wj20ÞÞ; ð10Þ

where

xc ¼ ðxi þ xiþ1Þ=2; ð11Þ
Fig. 1. A schematic representation of the ðx; vÞ coordinate system (2) and discretization scheme on a spacetime diagram, where null

directions are at 45� angles relative to the vertical, and timelike (spacelike) curves have tangent vectors less than (greater than) 45�. The
coordinate lines v ¼ const. are ingoing null curves, and x ¼ const. (<1) are timelike curves of constant areal radius. For reference,

outgoing null curves (thinner dotted lines) are also shown on the plot. Note that x ¼ const. becomes null in the limit x ! 1, corre-

sponding to past null infinity. The discretization of a variable f is also shown on the figure – the points labelled correspond to those

that need to be provided (in general) as ‘‘initial data’’ to solve for the unknown f nþ1
i at the interior point (xi; vnþ1).
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Wj0 ¼ ðWnþ1
i þWnþ1

iþ1 Þ=2; ð12Þ
W; xj0 ¼ ðWnþ1
iþ1 �Wnþ1

i Þ=Dx; ð13Þ

and similarly for bj0. The evolution equation for W is evaluated at the point ðvn þ Dv=2; xi þ Dx=2Þ by
including the points ðvnþ1; xiÞ, ðvnþ1; xiþ1Þ, ðvnþ1; xiþ2Þ, ðvn; xi�1Þ, ðvn; xiÞ and ðvn; xiþ1Þ:

Wnþ1
i ¼�

 
�Wnþ1

iþ1 xc

�
þ Dv
2Dx

ð1� xcÞ2F1
�
þWnþ1

iþ2

Dv
4Dx

ð1
�

� xcÞ2F1
�
þ xcðWn

iþ1 �Wn
i Þ

þ Dv
4Dx

ð1� xcÞ2F1ðWn
iþ1 � 2Wn

i þWn
i�1Þ � F1DxDvW;xjcð1� xcÞ

þ DvDx
2

ð1� xcÞ ð1
�

� xcÞg;xjc �
gjc
xc

�
ð1
�

� xcÞW;xjc �
Wjc
xc

�

þ xcDxDv

2ð1� xcÞ2
e2bjcm2Wjc

!
xc

��
þ Dv
4Dx

ð1� xcÞ2F1
�
; ð14Þ

where

gjc ¼ ðgni þ gnþ1
iþ1 Þ=2; ð15Þ
g;xjc ¼ ðgnþ1
iþ2 � gnþ1

iþ1 þ gni � gni�1Þ=2=Dx; ð16Þ
F1 ¼ �xc þ gjcð1� xcÞ; ð17Þ

and analogously for Wc, bjc andW;xjc. For each integration step (14) is first used to solve for wnþ1
i , then (9) is

solved for bnþ1
i , and finally we obtain gnþ1

i from (10). Note that at the first radial point in from I� (at

x ¼ 1� Dx) there are insufficient points available to evaluate g;xjc via the above scheme, and so there we

simply propagate W inwards using

Wnþ1
Nx�1 ¼ Wnþ1

Nx
: ð18Þ

Regularity conditions at x ¼ 0 are explicitly enforced for W fWðx ¼ 0; vÞ ¼ 0g and b fbxðx ¼ 0; vÞ ¼ 0g.
Furthermore we set Wðx ¼ Dx; vÞ using fourth order interpolation:

Wnþ1
1 ¼ 0; ð19Þ
Wnþ1
2 ¼ 3Wnþ1

3 =2�Wnþ1
4 þWnþ1

5 =4; ð20Þ
bnþ1
1 ¼ 4bnþ1

2 =3� bnþ1
3 =3: ð21Þ

On the outgoing (x ¼ 1) and ingoing (v ¼ 0) initial characteristics, we freely specify W. We set

gðx ¼ 1; v ¼ 0Þ ¼ 2m0, where m0 is the initial, asymptotic mass of the spacetime. We then integrate (9) and

(10) to obtain bðx; v ¼ 0Þ and gðx; v ¼ 0Þ, and integrate (8) along x ¼ 1 (using a similar discretization to

(10)) to obtain gðx ¼ 1; vÞ.
We employ black hole excision techniques to solve for spacetimes containing a black hole, and conse-

quently a geometric singularity. Here the underlying assumption is that cosmic censorship holds: any sin-
gularity will be hidden by an event horizon (black hole), and hence cannot causally influence the region
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outside the black hole [26]. This feature is exploited by placing an inner boundary inside the event horizon,

preventing the simulation from getting too close to the singularity. One cannot determine the location of

the event horizon prior to solving for the geometry of the entire spacetime; however, we can use the location
of an apparent horizon to tell us where to excise, for under reasonable assumptions the apparent horizon

always lies inside the event horizon [27]. An apparent horizon is defined as the outermost, closed surface

whose outgoing null rays form a non-divergent front (i.e. the surface is �trapped�). The location of the

apparent horizon is given by V ¼ 0 in (2). In practice, when we detect an apparent horizon, we excise the

portion of the grid interior to it, though we leave a small buffer zone between the apparent horizon and

actual excision surface (which is inside the apparent horizon). We implement excision by extrapolating all

variables, using fourth order extrapolation, to all points interior to the surface of excision. Thus the

‘‘solution’’ we obtain inside the black hole is not physically meaningful, but the excision does not adversely
affect the exterior part of the solution that we are interested in.
3. AMR in double null coordinates

Here we motivate and describe our AMR algorithm for characteristic codes. The salient features of the

algorithm are best demonstrated in a double null coordinate system; therefore we first describe the algo-

rithm in detail for this case, and then discuss the modifications for the spacelike-null situation in the fol-
lowing section.

Our AMR algorithm is modeled after the Berger and Oliger (B&O) algorithm [28] for hyperbolic,

Cauchy problems. The B&O algorithm has several desirable features that we have used as cornerstones in

building the scheme for characteristic codes:

• the computational domain is decomposed into a grid hierarchy, whereby the PDEs are discretized using

identical unigrid finite difference schemes on each grid within the hierarchy.

• dynamical regridding is performed via local truncation error (TE) estimates.

• the recursive evolution algorithm makes efficient use of resources in both space and time, for the grids are
always evolved with a time step set by the local spatial discretization scale (to satisfy the CFL condition),

and not by the smallest scale within the problem.

It is not possible to directly apply the B&O algorithm in a double null coordinate system by (for in-

stance) treating one of the null coordinates as the ‘‘spatial’’ coordinate and the other as ‘‘time’’, and then

integrating the ‘‘spatial’’ surfaces in ‘‘time’’. This is because propagation along the null surface masquer-

ading as a spatial surface will be instantaneous, and hence the local TE estimation scheme will not be able

to track corresponding features of the solution. The key to adapting B&O to characteristic codes is to

effectively consider each null direction as ‘‘time’’, and then to simultaneously evolve along both.
In the double null evolution algorithm the structure of the grid hierarchy goes hand-in-hand with the

evolution scheme, so we first describe the hierarchy in detail before presenting the evolution scheme.
3.1. AMR grid hierarchy

For the following discussion we will consider the discretization of a double null coordinate system ðu; vÞ,
where u ¼ const. labels an outgoing null curve, and v ¼ const: an ingoing null curve. For example, a co-

ordinate transformation of the form du ¼ �e2aðV dv=r þ 2drÞ, with e2aðv;rÞ an integrating factor, will bring
(2) into the form

ds2 ¼ �e2n dudvþ r2 dX2; ð22Þ

where n and r are now considered functions of u and v.



Fig. 2. An example of a double null grid hierarchy. The upper-most figure shows the entire hierarchy, composed of four levels in this

case. Each level is stored independently of the others; in the lower plots we show the structure of each of these levels.
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The AMR grid hierarchy (see Fig. 2 below for an example) consists of a sequence of N levels: ‘1; ‘2; . . . ; ‘N ,
where all grids at level m are discretized on a uniform mesh with ½Dum;Dvm� ¼ ½Du1=qm�1;Dv1=qm�1�, and q is

the refinement ratio. Therefore, higher levels (larger level numbers) are composed of finer grids. In this paper
we only consider q ¼ 2, however the generalization to arbitrary integer values of q � 2 is straight-forward

(as is the generalization to different refinement ratios for each level). All grids at level m are entirely contained

within grids at level m� 1. What we mean by this is that the coordinate region spanned by the union of grids

at level m is a subset of the coordinate region of the union of grids at level m� 1. Furthermore, we require

that the meshes of all levels be aligned such that any point ðui; vjÞ in a grid at level m� 1 within the region of

overlap between levels m and m� 1 (a parent point) be coincident with a point on a grid at level m (a child

point). This alignment of grids between levels is essential for the recursive evolution algorithm (and useful for

truncation error estimation), as will be explained in Section 3.2. As an aside, note that the characteristic
AMR algorithm could still allow for rotation of child grids in higher dimensional (>2) simulations in the

same sense as the original B&O algorithm, however, here the rotation would be within a subspace or-
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thogonal to u ¼ const:, v ¼ const. In other words, we only require rigid alignment of the two ‘‘time’’ co-

ordinates u and v.

3.2. Evolution scheme

Evolution of PDEs discretized on the kind of grid hierarchy just described proceeds by recursively

evolving a particular sequence of unigrid unit cells, from the coarsest to finest levels, and then propagating

the solution obtained on the finer levels back to the coarser ones. The unit cell for a typical double null

discretization scheme is shown in Fig. 3. For a concrete example, consider the spherically symmetric wave

equation on a flat background (whose line element is ds2 ¼ �dudvþ r2 dX2, where r ¼ ðv� uÞ=2):

�/ ¼ 0 ! /;uv þ
1

2r
/;u

�
� /;v

�
¼ 0: ð23Þ

A second order accurate finite difference version of (23), discretized on the unit cell of Fig. 3, is [29]

/A þ /C � /B � /D

DuDv
þ 1

2r
/A þ /B � /C � /D

2Du

�
� /A þ /D � /B � /C

2Dv

�
¼ 0: ð24Þ

Initial data for / must be specified on the initial ingoing and outgoing characteristics, which amounts to

specifying / at points B, C and D. Evolution to point A then proceeds by solving (24) for /A. Evolution of /
over an entire uniform mesh of cells is then trivial (ignoring boundary conditions) – the unit cell evolution

scheme is repeatedly applied, in arbitrary order, to all cells where past values (corresponding to points A, C
and D) of / are known, until all points in the grid are solved for.

The extension of this unigrid evolution scheme to an adaptive hierarchy is for the most part straight-

forward, and follows the B&O scheme rather closely in spirit. The evolution algorithm consists of a par-

ticular sequence of single, unit cell evolution steps. The order in which cells are traversed over the hierarchy
is dictated by causality, in that we can only evolve to point A if the ‘‘initial/boundary data’’ at points B, C
Fig. 3. A fundamental unit cell of the double null evolution scheme. The unit cell consists of the four points A, B, C and D. In the plot

we also schematically show part of the data structure we use to represent the hierarchy, namely, a set of point-structures (or points for

short), linked together to form the mesh. Each point contains north (n), south (s), east (e) and west (w) links to adjacent points at the

same level, as shown for point C. In addition, certain points will have parent and/or child links to corresponding points in the parent

and/or child levels (not shown in the figure).
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and D are known. However, notice in Fig. 2 (and below in the first frame of Fig. 5, depicting a sample

evolution) that this initial data will not be available on a finer level m > 1 with initial surfaces u ¼ Um or

v ¼ Vm that are interior to the computational domain boundaries, i.e. where Um > U1 or Vm > V1 (we assume
that at u ¼ U1 and v ¼ V1 the entire initial grid structure is supplied – see Section 4 for a discussion on how

the initial hierarchy could be calculated). The solution to this problem is to always evolve coarser, parent

cells first, and use the solution obtained on a parent cell to set initial data, via interpolation, at child cell

points bounding a newly refined region. Then, evolution on the set of child cells is performed, recursively

evolving additional finer levels if present. The solution obtained at points coincident with points on the

parent level are injected back to the parent level, to maintain a single-valued solution where the most ac-

curately known values are stored at all points in the hierarchy.

In theory, using interpolation to set interior initial data of fine regions will not adversely affect the
consistency of the FD approximation to the PDEs if the hierarchy is generated via local truncation error

(TE) estimates. 1 For then, prior to the surface u ¼ U‘ (or v ¼ V‘) when a new fine level ‘ is added, the local
TE on level ‘� 1 will have the same order of magnitude as the maximum allowed TE, and hence if a

sufficiently high order of interpolation is used to initialize the fields at u ¼ U‘ (v ¼ V‘) the solution error on

level ‘ will differ from that on level ‘� 1 by an amount less that the local TE there. In practice, interpolation

often introduces high-frequency solution components (noise) that produce a significant amount of error

when propagated away from the refinement boundaries during subsequent evolution. Adding numerical

dissipation to the FD scheme can significantly reduce this noise, as can the choice of interpolation operator
and the frequency of regridding. These issues will be discussed in more detail later on in this section, and in

Section 4.1.1.

The rule that we always evolve a parent cell before any child cells is naturally implemented via a recursive

subroutine, which is summarized in pseudo-code in Fig. 4. The steps taken in a sample, 3-level evolution is

depicted in Fig. 5. One of the differences of the characteristic AMR algorithm, compared to the B&O

algorithm, is that a slightly more complicated data structure is needed to efficiently represent the dynamical

hierarchy. In B&O, the grid hierarchy is calculated over the entire spatial hypersurface at a given time, and

hence the grids at a given level can efficiently be stored as a list of one dimensional arrays (in a 1+1 D
simulation). In the characteristic algorithm, the structure of the hierarchy is revealed point-by-point, si-

multaneously in the u and v directions as one evolves, and hence one cannot pre-allocate similar one di-

mensional arrays. We have chosen to use a data structure where a point ðui; vjÞ, at some level ‘, is the

fundamental unit of data. The mesh is then constructed by linking together adjacent points at the same level

with north (n), south (s), east (e) and west (w) pointers as depicted in Fig. 3, and linking points at the

same coordinate location in levels ‘� 1 and ‘þ 1 via parent and child pointers respectively. In the pseudo-

code in Fig. 4 we have used C programming language notation to represent links; for example, referring to

Fig. 3, A ¼ B ! n, and B ¼ A ! s. In the following paragraphs we will discuss key lines of the pseudo-code
in detail.

The function evolve_unit_cell(C) listed in Fig. 4 takes, if possible, a single evolution step to the causal

future of the point C, at the level of point C. Prior to solving the PDEs in line 16, the hierarchy is extended

to points A, B and D if necessary (lines 6–14). As discussed in the preceding paragraphs, when the program

execution reaches line 6, points B and D will always exist on the coarsest level of the hierarchy, and at

interior points of all levels; only on the boundaries of a refined region might one need to create these points

and initialize them via interpolation from the parent grid. Once the equations have been solved at point A, if
the TE at C is greater than the maximum allowed, we recursively evolve the four unit cells of the child level
that occupy the same region as the unit cell of point C (lines 18–23). 2 Note that because of the manner in
1 We assume that the solution and truncation error estimates are sufficiently smooth functions of u and v. However, in principle one

can specify non-smooth, though continuous initial data in / on v ¼ v0 and u ¼ u0, together with the appropriate initial hierarchy.
2 In general, a refinement ratio of n:1 will require a sequence of n2 evolution steps on the child level at this stage in the algorithm.



Fig. 4. A pseudo-code description of the adaptive evolution algorithm. The function evolve_unit_cellðCÞ recursively evolves the PDEs

on all points in the grid hierarchy at the level of point C and higher one unit cell (of the level of C) to the causal future of C (i.e. to point

A in Fig. 3). The function evolve_hierarchyðÞ demonstrates one possible sequence of evolve unit cellðÞ calls that can be used to solve the

PDEs over the entire hierarchy (we arbitrarily decided to evolve in u first, then v).
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which we refine (lines 31–34), C will always have a child point in the hierarchy if the TE at C is greater than

the maximum allowed value. After all the child-levels have been evolved to point A, the solution obtained

there on the finest level is injected back to the current level (line 30); i.e. we replace the variables at A with

those at the child of A (the recursion guarantees that the values stored at the child of A will have come from

the solution obtained on the finest level of the hierarchy containing A).
We compute the truncation error estimate in lines 25–27 using a self-shadow hierarchy technique [30], which

is a variant of a shadow hierarchy. In the traditional B&O algorithm, when truncation error estimates are



Fig. 5. Steps in a sample, 3-level evolution. Frame 1 shows the initial hierarchy. The subsequent frames show how the hierarchy is

recursively created in a single coarse grid (at level 1) evolution step. An arrow in a frame indicates which grid point is being updated

during that step. Frames 6 and 7 show the only steps in this example where data needs to be interpolated from a parent level (at the

point to the ‘‘south’’ of the arrowed-point in each case). After step 9, we assume that level 3 is unrefined, and hence the final evolution

step depicted in frame 10 takes place at level 2. Note that in the algorithm described in the paper, unrefinement (and equivalently

refinement in frame 6) would not occur here; using a self-shadow hierarchy, refinement/unrefinement of level 3 can only occur at points

where level 2 and 1 are in sync. For brevity we ignore this aspect of the algorithm here.
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needed at regridding time two copies of the subset of the hierarchy over-which regridding will be performed is

made; the first is an identical copy of the hierarchy, while the second is a 2:1 coarsened version of the first. Then

a single evolution step is taken on the coarsened copy, and two evolution steps (with the same Courant factor)
are taken on the fine copy, i.e. the copies are evolved to the same coordinate time. TheTE is then computed as a

point-wise norm of the difference between the solutions obtained on the two copies (which are subsequently
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deleted). A shadow-hierarchy economizes this process by always evolving a 2:1 coarsened version (the

‘‘shadow’’) of the main hierarchy in conjunction with the main hierarchy. The solution obtained on the main

hierarchy is then periodically injected into corresponding grids of the shadow hierarchy. A self-shadow hi-

erarchy further economizes the truncation error estimation process by noting that, due to the recursive nature

of the evolution algorithm, information required to compute aTEat level ‘ is ‘‘naturally’’ available prior to the
injection step from level ‘� 1 to ‘. For at that stage in the evolution process, the solution obtained at the

common point A on both levels has been calculated via independent evolution at two discretization scales,

starting from identical ‘‘initial data’’ one unit cell to the past of point A on level ‘� 1. Thus, metaphorically

speaking, a hierarchy can act as its own shadow at points where there are at least two levels of refinement. To

implement a self-shadow hierarchy requires that the base level (level 1) always be fully refined, and we then

define the TE at a point in level ‘, ‘ > 1, via the difference in the solutions obtained there and at the corre-
sponding point in level ‘� 1, prior to injection from level ‘ to ‘� 1.

3.2.1. More on truncation error estimates

We conclude this section by discussing a few practical details concerning the computation of the TE. The

point-wise TE computed using solutions to wave-like finite-difference equations is in general oscillatory in

nature, and will tend to go to zero at certain points within the computational domain (we will discuss this in

more detail in the next paragraph), even in regions of relatively high truncation error. We do not want such

isolated points of (anomalously) small TE to cause temporary unrefinement, for experience suggests that
refinement boundaries are often a significant source of unwanted high-frequency solution components.

Even though we can, to some degree, eliminate the high-frequency components via dissipation (see Section

4) one would like to avoid situations that produce ‘‘noise’’ as much as possible. Therefore, in practice, the

TE we use to determine whether we refine or unrefine at a given point is an average of the point-wise TE

taken over several cells to the past of the point. Also, note that when using a self-shadow hierarchy, we only

compute a point-wise TE when point A is in sync with its parent; we then define the TE at the three points

A ! n, A ! w and A ! n ! w to be identical to that of A.
To give a more quantitative description of the nature of the TE, we will analyze the sample wave

equation and discretization given in (23) and (24). Decompose a solution / to the finite difference equation

L/ ¼ 0 (24) as

/ ¼ /0 þ /e; ð25Þ

and decompose the difference operator L as

L ¼ L0 þLe; ð26Þ

where L0 ¼ @uv þ ð1=2rÞð@u � @vÞ is the continuum operator (23), and /0 satisfies the continuum wave

equation (L0/0 ¼ 0). Hence /e is the truncation error. For the discretization in (24), the operator Le takes

the form

Le ¼
1

16r
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Dv2 þOðh4Þ; ð27Þ

where h denotes either Du or Dv. Then

L/ ¼ 0 ¼ ðL0 þLeÞð/0 þ /eÞ ¼ L0/e þLe/0 þLe/e � L0/e þLe/0; ð28Þ

where in the last step we have assumed that the truncation error /e is of order h
2, and so to leading order we

can ignore the termLe/e. Considering Eq. (28) to be an evolution equation for the truncation error /e, and

assuming that /0 is given, we can see that /e satisfies the continuum wave equation with source term�Le/0:

L0/e � �Le/0: ð29Þ
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Therefore, from (27), the leading order part of the truncation error will be proportional to third and

fourth derivatives of /0. During a numerical evolution, if we are in the convergent regime, then a truncation

error estimate computed as described in the preceding paragraphs will be a good approximation to the
actual truncation error /e, and the numerical / will be close to the desired continuum solution /0; hence we

would expect the TE estimate to be proportional to derivatives of / as given by (29), which in general will

exhibit zero-crossings.
4. Extensions to the basic algorithm

In this section we briefly describe two extensions to the double null algorithm introduced in the previous
section – first, to allow for a coordinate system with a single null coordinate, and second, extensions to higher

dimensional systems. We also suggest a technique that can be used to parallelize a characteristic code.

We restrict the discussion on modification for a single null algorithm to the numerical scheme and

coordinate system presented in Section 2, though in general no significant changes would be needed to alter

the algorithm to use an outgoing instead of ingoing null coordinate, or use different FD stencils.

4.1. AMR with a single null coordinate

The coordinate system introduced in Section 2 has a single null coordinate v and a spacelike coordinate x
(which becomes timelike when there are trapped surfaces). This does not alter the double null algorithm ‘‘in

spirit’’, though, as demonstrated inFig. 6 anddiscussed further below, the spacelike coordinate does introduce

a preferred directionof integration, andalso changes the shape of the unit cell in amanner that affects the order

in which child cells are recursively traversed during evolution. We use the same data structure as before to

represent the hierarchy, though here north–south links follow lines of constant x. We also assume that initial
Fig. 6. The fundamental unit cell of the ðx; vÞ coordinate system (2) as depicted in Fig. 1, and using the discretization scheme discussed

in Section 2. Points E, B, C, F and D hold the ‘‘initial data’’ for a single evolution step that solves for unknowns at point A. The same

data structure is used to represent the mesh as with the double null scheme (Fig. 3).
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data for the evolution is still specified on a pair of null surfaces; this is easy to do in the coordinate system (2) if

we use x ¼ 1 as the initial surface of integration in x, for x becomes null in the limit x ! 1.

Notice from Fig. 6 that because x ¼ const. is timelike, causality forces us 3 to integrate in x, along curves
v ¼ const., before taking integration steps in v. In other words, the causal past of the unknown point A at

ðx; vÞ ¼ ðxA; vAÞ, that we want to solve for during a single integration step, now includes regions of spacetime

with x � xA; v � vA and x < xA (hence the extension of the unit cell to include point E). Thus, initial data
specified along x ¼ x0 and v ¼ v0 will not be sufficient to integrate along the sequence of curves

x ¼ x0 � Dx; x ¼ x0 � 2Dx; . . .; instead we need to integrate along v ¼ v0 þ Dv; v ¼ v0 þ 2Dv; . . .. Further-
more, note that the size of the integration step Dv is now subject to a CFL stability condition in that Dv
must be sufficiently small so that point E of the numerical stencil is spacelike separated from A.

The change in the causal structure of the coordinate system also affects the order in which child cells are
traversed during the recursive phase of the evolution algorithm. For the unit cell depicted in Fig. 6, lines 18–

24 of the double null algorithm listed in Fig. 4 should be modified to the following:

18: if (TRE(C)>maximum_TRE) then

19: if (C->child has not been evolved) then evolve_unit_cell(C->child);

20: evolve_unit_cell(C->child->w);

21: evolve_unit_cell(C->child->w->w);

22: evolve_unit_cell(C->child->n);

23: evolve_unit_cell(C->child->n->w);
24: end if

This sequence of child-cell evolution steps ensures that initial data, consisting of points B, C, D, E and F ,
is always available when we integrate to point A, at any level within the hierarchy. Effectively, what we are

doing is evolving all child points that are contained within the coordinate volume of the unit cell to the past

of A before evolving to the future of A. The test in line 19 of the modified algorithm prevents the corre-

sponding point from being evolved twice in the interior of the grid, which otherwise could happen because

neighboring unit cells overlap in the x direction. The only place where C ! child is evolved is on the initial

x ¼ Xm boundary of a refined region or the computational domain (where Xm ¼ 1). On such a boundary, if
Xm < 1, we initialize the set of points corresponding to F in Fig. 6 via interpolation from parent cells (as is

done with the other points B, C, D and E on the refinement boundary). At Xm ¼ 1, we effectively initialize W
at F via extrapolation of the initial data on x ¼ 1 to x ¼ 1þ Dx via W;x ¼ 0 there (the evolution equations

for b and g are first order in x, and do not require initial data at F ).

4.1.1. Initial hierarchy construction and problem dependent options

Here we briefly describe some features of our one dimensional code that are of relevance to a general

AMR algorithm, including the interpolation and dissipation operators we use, though the particular im-
plementation of these features may be problem dependent.

We have decided to use the function W;x to compute truncation error (TE) estimates. This function

behaves adequately in tracking regions of high TE in the situations we have looked at, except for incoming

waves from I� in the vicinity of I�. The reason why W;x (or any function of W) fails to give a good estimator

for the TE of the system there is that, with our choice of coordinates and variables, incoming (massless)

waves from I� are propagated essentially without error in the vicinity of I�. This has not been a problem for

us, as the initial data we specify on I� is always well resolved with a reasonably sized coarse mesh.

Therefore, the initial hierarchy at x ¼ 1 only consists of two levels – the base level (‘ ¼ 2) and its shadow
(‘ ¼ 1). On the other initial characteristic v ¼ 0, we generate the initial hierarchy by iterating the following

until the number of levels stops increasing: we evolve all levels forward one coarsest step from v ¼ 0 to
3 If we want to maintain a relatively simple time-stepping procedure.
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v ¼ Dv1 (refining as usual during the evolution), then we reset v to 0, and reinitialize the fields using the

hierarchy obtained at v ¼ Dv1. We start the iteration process with the two coarsest levels fully refined.

Some form of numerical dissipation is usually necessary in Cauchy AMR codes, for otherwise the in-
terpolation at grid boundaries is often a source of unwanted, high-frequency solution components (noise).

We have also found it necessary to add dissipation to the characteristic algorithm. 4 We do so by using a

Kreiss–Oliger style filter [31], whereby we modify Wnþ1
i after it has been solved for in (14) via:

Wnþ1
i ! Wnþ1

i � �

16
Wn

i�2

�
� 4Wn

i�1 þ 6Wn
i � 4Wn

iþ1 þWn
iþ2

�
; ð30Þ

where � should be between 0 and 1 for stability; we typically use � ¼ 0:1 in the AMR code. This form of
dissipation is adequate in some situations, though is not always effective in reducing noise when a new fine

level is introduced. Furthermore, even though increasing � beyond � 0:2 does help to further reduce the

high-frequency noise, we have found that it often introduces a small, low-frequency, ingoing ‘‘tail’’ com-

ponent to W when the scalar field is predominantly outgoing. Thus, work still needs to be done to find a

more effective form of dissipation for characteristic AMR. A final comment regarding dissipation: after a

new fine level is introduced, we typically disable regridding in a small buffer zone next to the boundary of

the new level; this gives the dissipation some time to work at eliminating the noise introduced via inter-

polation, and prevents a refinement ‘‘cascade’’.
We use cubic Lagrange interpolating polynomials to initialize fine level grid functions at refinement

boundaries if a sufficient number of adjacent points are available on the parent level, otherwise we use

linear interpolation – Fig. 7 is a pseudo-code description of our interpolation routine. We have also ex-

perimented with linear interpolation for all child points, though found that this produces significantly more

noise after refinement.
4.2. Application to higher dimensional systems

The extension of the AMR algorithm to higher dimensions, in other words to problems where there is

dependence on additional spacelike coordinates zi, i ¼ 1; 2; . . . ; d, is straight-forward. The zi coordinates are
treated just as the spacelike coordinates are in the traditional B&O algorithm. The null AMR evolution

algorithms described in the preceding sections are un-modified, except that now at each ‘‘point’’ of the mesh

structure one needs to store a list of d-dimensional arrays. Thus, the composite grid hierarchy at any point

ðu; vÞ (or ðx; vÞ, etc.) within the computational domain will look like a B&O hierarchy for a d-dimensional

problem. The particular set of arrays needed at a given point and at a given level in the hierarchy are

determined, as usual, by local truncation error estimates. Consequently, standard clustering algorithms will
be needed to convert the region of high TE to a set of grids.
4.3. Parallelization

Here we briefly mention a scheme that could be used to parallelize a characteristic code, with AMR or

otherwise. For simplicity, we illustrate the concept with a unigrid double null scheme, though it is not

difficult to generalize it. The idea is to use a set of n processors as a pipeline, as demonstrated in Fig. 8.

Integration starts on a single node, where processor 1 solves the equations within a region R1 of size
A ¼ DU DV to the future of the initial point ðu0; v0Þ. Afterward, initial data is available to simultaneously

solve the equations on two regions R2 and R3, of the same size A, to the future of R1. Processor 1 (arbitrarily)
4 However here the situation is somewhat different, in that we need to apply dissipation along a ‘‘time’’ direction; in a typical Cauchy

AMR codes one only dissipates in space.



Fig. 7. A pseudo-code description of the interpolation routine we use to initialize functions at points on the initial data surfaces of

interior fine levels. We use cubic interpolation if it is possible to do so given the structure of adjacent points on the parent level,

otherwise we switch to lower order interpolation. For the kinds of hierarchies generated by the algorithm described here, one of these

conditions will always be matched, hence the ‘‘if’’ part of the last ‘‘else if’’ statement is not necessary.
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proceeds to solve the equations in region R2, while supplying the relevant initial data to processor 2 to

evolve region R3. After processors 1 and 2 have solved the equations in regions R2 and R3 respectively, initial

data is now available to simultaneously evolve three regions of size A. Processor 3 can now enter the
pipeline, and the process continues. After the first n steps, the pipeline will be full, and all nodes will be

involved in the computation.

One desirable feature of this algorithm (compared to a typical parallelization scheme for a Cauchy

problem) is that it would be possible to stagger the communication – in other words, all nodes do not need

to, and ideally should not, communicate at the same time. Furthermore, in a certain sense the communi-

cation is one way, so that when a processor is finished solving one block of data it can simultaneously send

initial data to the next processor down the line while starting to evolve a new block. It would also not be

difficult to modify the algorithm to dynamically subdivide the region of space a processor must solve in a
single step, to provide better load balancing among the nodes (this will be necessary when AMR is used, or

in a higher dimensional simulation if the total number of points on grids in the extra spacelike dimensions

depend on where in ðu; vÞ space one is).



step 2step 1

step 4 step 5

step 3

processor 1

processor 2

processor 3vu

Fig. 8. An illustration of the technique suggested to parallelize a characteristic code. In this example, three processors are available to

simultaneously solve the equations. We subdivide the grid into blocks of equal area, and assign blocks to individual processors as

shown in the figure. The heavy line drawn on the grid at step i represents the surface where initial data will be available at step iþ 1.

Before step one, there is only a single block where sufficient initial data is available to solve the equations, hence only one processor is

active then. After step one there are two unsolved blocks that can be evolved, and thus two processors become active; and so on, until

the ‘‘pipeline’’ of processors is full.
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5. Tests & results

In this section we present results from two evolutions obtained using the 1D characteristic AMR code

described in the previous sections. The first example models a black hole interacting with an initially

outgoing pulse of massive scalar field energy. The relatively large mass term we use, in conjunction with the
compactified radial x coordinate, causes a wide range of relevant scales to develop at late times, and we

show that the algorithm is able to track these features with reasonable accuracy via comparison with results

from unigrid evolution. The second example shows a near-critical collapse [32] of the massless scalar field.

For reasons we will explain below, our coordinate system is not well suited to studying this kind of critical

phenomena, and hence the example is not very close to criticality. Nevertheless, we are close enough to

demonstrate that the algorithm can also adapt to the very small length scales that develop from ingoing

initial data.

5.1. Massive scalar field – black hole interaction

For the first example, we specify W along v ¼ 0 as follows:

Wðv ¼ 0; xÞ ¼ Axð1� x=x1Þ4ð1� x=x2Þ4; x1 < x < x2;
0; elsewhere;



ð31Þ

choose x1 ¼ 0:15, x2 ¼ 0:25, A ¼ 5� 103 and the mass parameter m ¼ 5. We set gðx ¼ 1; v ¼ 0Þ ¼ 0:2, so
that the asymptotic mass of the spacetime is 0.1; the initial (v ¼ 0) black hole mass is �0.063, indicating that
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the scalar field contributes �0.037 to the initial mass of the spacetime. We ran the simulation to v ¼ 10, by

which time the black hole mass had grown to roughly 0.068 due to accretion of scalar field energy. First, to

demonstrate the correctness of our solution to the finite difference equations, in Fig. 9 we show the con-
vergence factor for the scalar field QW

QW ¼ jjW4h �W2hjj2
jjW2h �Whjj2

; ð32Þ

computed using solutions from three different resolutions of unigrid simulations. W4h has 1025 points in x,
W2h 2049, and Wh 4097. The Courant factor is 0.25 in all cases; i.e. Dv ¼ 0:25Dx. That QW is around 4 for

most of the simulation indicates that we are seeing second order convergence, as expected (and that QW

eventually starts to deviate from 4 is also not unexpected – accumulating numerical errors, especially in our

compactified coordinate system, will eventually cause any finite resolution simulation to move away from
the convergent regime). For brevity we do not show convergence factors for the other fields; they also

exhibit second order convergence. To demonstrate the accuracy of the adaptive code, we first show a

comparison between a solution generated with AMR to the finest unigrid solution, and then present some

results from a convergence test.

5.1.1. Comparison between AMR and unigrid solutions

For the comparison between the AMR and unigrid results, the parameters for the AMR run were set so

that the base level (2) has 513 points (hence the shadow level (1) has 257 points), and the maximum allowed
TE is such that early on (in v) during the evolution the finest level is 5, giving the same resolution locally as

that of the finest unigrid simulation. At late times during the adaptive run additional levels are introduced

to track the outgoing pulse (whose width shrinks due to the radial coordinate we use) – see Fig. 10 for

several snapshots of W along v ¼ const: surfaces during evolution, Fig. 11 for the maximum level as a

function of x at the same instants of v shown in Fig. 10, and Fig. 12 for a plot of the maximum level in the
Fig. 9. The convergence factor QW (32) from unigrid evolution of the black hole-massive scalar field initial data.



Fig. 10. WðxÞ along several v ¼ const. slices of the spacetime, from the adaptive black hole-massive scalar field simulation discussed in

Section 5.1.1. The position of the excision surface is denoted by a vertical dashed line, and is always kept a distance of 0.025 in x inside
the apparent horizon; the scalar field is set to zero inside the excision surface. The scalar field pulse is initially outgoing, and the higher-

frequency components of the field continue to travel outward at the speed of light. The non-zero mass term in the scalar field equation

of motion causes lower frequency components of the field to travel at speeds less that 1; these trail the leading pulse of the field, and

interact more strongly with the black hole. See Fig. 11 below for a plot of the maximum AMR level along the same slices shown here to

see how the AMR algorithm correctly tracks the outgoing, higher-frequency components of the solution.
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hierarchy over all x as a function of v. To gauge the quality of the adaptive solution, we use the highest

resolution unigrid solution for W as a benchmark, and compare this solution to the lower resolution unigrid
and adaptive results. Fig. 13 shows the ‘2 norm (computed along v ¼ const. slices of the spacetime) of these

differences, and Fig. 14 plots Wðx; v ¼ 10Þ from the four simulations near the leading edge of the pulse, for

visual comparison. Fig. 13 demonstrates that early on the adaptive solution gives slightly worse results than

the lower resolution unigrid solution, which is not too surprising as the AMR solution only covers a

portion of the computational domain with comparable or higher resolution. However, at late times the

adaptive solution starts to outperform the coarser unigrid solutions as the AMR is able to keep the nar-

rowing pulse well resolved.

5.1.2. AMR convergence test

For a separate convergence test of the AMR code we ran three simulations with the same initial data as

described above, varying the base grid resolution and maximum allowed truncation error to mimic dou-

bling the resolution from one run to the next. Specifically, the lower resolution simulation had 257 points

in the base level (2) with a maximum TE of s4h, the medium resolution run had a base grid of 513 points and



Fig. 11. Maximum level of the hierarchy from the adaptive black hole-massive scalar field simulation discussed in Section 5.1.1, at the

same slices of the computational domain shown in Fig. 10.

Fig. 12. Maximum level of the adaptive hierarchy along v ¼ const. slices of the spacetime, from the adaptive black hole-massive scalar

field simulation discussed in Section 5.1.1.
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a maximum TE of s2h ¼ s4h=4, while the higher resolution simulation had a base grid of 1025 points

and a maximum TE of sh ¼ s4h=16. However, due to limited available computer resources we restricted
the maximum depth of the hierarchy to 7 for these three runs (at this stage our code is not memory



Fig. 13. Comparison of Wðx; v ¼ const:Þ between the highest resolution unigrid simulation (Wh), and lower resolutions unigrid sim-

ulations (W2h and W4h) and adaptive simulation (Wad) described in Section 5.1.1. The unigrid h (2h; 4h) simulation has 4097 (2049,1025)

points in x, while level 5 of the AMR run has the same resolution as the h unigrid run (see Fig. 11). This figure shows that at early times,

both the 2h and 4h unigrid simulations perform slightly better than the adaptive run, compared to the h unigrid solution; however at

late times the adaptive code starts to outperform the lower resolution unigrid runs, as the AMR tracks the ever-narrowing outgoing

pulse (see Fig. 10). See Fig. 14 below for plots of W from the four solutions at v ¼ 10.

Fig. 14. WðxÞ from the adaptive and three unigrid solutions, at v ¼ 10 of the black hole-massive scalar field simulation (Section 5.1.1).

We only show a small range of the x coordinate domain (compare Fig. 10), as this region shows the largest disagreement among the

four simulations. The unigrid h (2h; 4h) simulation has 4097 (2049,1025) points in x, while level 5 of the AMR run has the same

resolution as the h unigrid run (see the last frame of Fig. 11).
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efficient, and the high resolution run was using most of the available memory nearing the end of the

simulation). Note that this scheme for convergence testing an AMR code will not produce identical grid

hierarchies that differ only in resolution, because the truncation error estimate used in each numerical

simulation will not scale exactly as the leading order part of the actual truncation error, which decreases by
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a factor of 4 each time the mesh spacing is halved for a second order accurate scheme. Nevertheless, if the

test were to show non-convergent results it would be a clear indication of problems with the implemen-

tation. Fig. 15 shows the convergence factor for W (where to calculate QW as in (32) we first interpolated the
solutions to identical uniform grids). Early on we get a convergence factor that is closer to first than second

order convergence. The primary reason for this appears to be grid-boundary ‘‘noise’’ generated at parent–

child interfaces, and as discussed in Section 4.1.1 our current interpolation/dissipation scheme is not yet

very effective at reducing this noise. Later on in the simulation the convergence behavior appears to im-

prove significantly (and become unrealistically high), however this is mostly because we had to limit the

maximum level to 7. At late times this is not sufficient to maintain the desired TE (see Fig. 11 for the level

structure generated by the AMR run described in the previous section, which had a base resolution

equivalent to that of the medium resolution simulation here), and the solutions start to drift away from the
convergent regime. In fact, by v ¼ 10 the lower resolution run had accumulated significant phase errors in

W, whereas the medium and high resolution solutions were still roughly in phase, which gives some ex-

planation for the anomalously high value of QW (32) in this case.

5.2. Massless scalar field critical collapse

For a second, brief example, we consider the near-critical collapse of an initially ingoing pulse of the

massless scalar field:

Wðv; x ¼ 1Þ ¼ Að1� v=v1Þ4ð1� v=v2Þ4; v1 < v < v2;
0; elsewhere;
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Fig. 15. The convergence factor QW (32) from AMR evolutions of the black hole-massive scalar field initial data. The lack of second

order convergence is primarily due to inadequate dissipation of high-frequency ‘‘noise’’ generated at parent–child interfaces, and the

anomalously high convergence factor at later times is due to a significant phase error developing in the solution from the lowest

resolution run compared to the two higher resolution runs; see the text in Section 5.1.2 for further discussion.



Fig. 16. WðxÞ=rðxÞ along several v ¼ const. slices of the spacetime, from a sub-critical, massless scalar field evolution (with purely

ingoing initial data, i.e. Wðx; v ¼ 0Þ ¼ 0). The first four plots above correspond to slices where WðxÞ=rðxÞ has attained a local maximum

or minimum at the origin; the first two of these would be present in the weak field regime, in the next two we are beginning to see the

first half-echo of the critical solution (one feature of which is that the central value of the scalar field oscillates between approximately

�0.6 during each self-similar echo). In the last frame the scalar field is dispersing.
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and set v1 ¼ 0:01, v2 ¼ 0:11 and gðx ¼ 1; v ¼ 0Þ ¼ 0. A is tuned (via a bisection search) so that the collapsing

pulse is close to the threshold of black hole formation. As mentioned before, the coordinates we use are not

well suited to studying type II critical collapse, where one should be able to form arbitrarily small black

holes in the super-critical regime. The reason is that in our coordinate system, a non-zero initial value
gðx ¼ 1; v ¼ 0Þ ¼ 2m0 describes a spacetime containing a black hole of mass m0 (assuming Wðx; v ¼ 0Þ ¼ 0).

Truncation error effects in the integration of gðx ¼ 1; vÞ, and subsequent evolution in x, causes small errors

in g that effectively behave as if a small black hole (of size proportional to the TE) had been present in the

initial data. This is not a problem for unigrid evolution, as the erroneous black hole is typically smaller than

the grid spacing; however during a critical evolution where arbitrarily small scales unfold, and refinement

resolves these scales, this black hole is eventually revealed. Thus the resolution of the initial data at I�

places a limit on how close to critical we can evolve. 5 For this example we chose a base (level 2) resolution

of 2049 in x (with Dv ¼ 0:25Dx); then the smallest black hole we can form is on the order of 10�4, which is
5 To seriously study critical collapse with this characteristic AMR algorithm one would therefore need to choose more appropriate

coordinates, such as one based on an outgoing null coordinate for instance [33].
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roughly 1/2 the size of a base-level cell in x. Fig. 16 shows several snapshots ofW=r from the evolution of the

nearest-to-critical sub-critical amplitude we found, and Fig. 17 shows the corresponding level structure.
6. Conclusion

In this paper we have introduced a new algorithm that can be used to add an AMR framework to a

characteristic evolution code. The algorithm is similar to the Berger and Oliger algorithm for Cauchy codes,

and shares many of its desirable features, including dynamical regridding via local truncation error esti-

mates, efficient use of computational resources via the recursive evolution scheme, and in principle it does

not require modifications to the underlying unigrid finite difference scheme. As discussed in the intro-

duction, we believe AMR is essential to achieve accurate results from simulations in many general rela-

tivistic scenarios. Based upon the early success of this AMR technique with the one dimensional code
presented here, we think it would be well worth the effort to apply the method to higher dimensional

problems of interest.
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